非科幻思考(第3/18页)

就是大数据辅助的“深度学习”,成为这一轮人工智能热的关键。

人们把很多很多大数据扔给机器,用多层神经网络进行“深度学习”,结果发现,机器在很多领域能力有了突飞猛进的提高。图像识别的正确率赶上了正常人,语音识别也过关了,把科学文献作为数据,短时间就能学习几十万份最新文献。金融、电力、能源、零售、法律,“深度学习”都能从大数据中学到优化的行为做法。人工智能的应用,能让这些领域变得高效、便捷、自动化。除了“深度学习”,也还有其他算法,包括后面要提到的决策树、贝叶斯等算法,各种算法的综合使用效果是最佳的。各种算法共同构成机器学习大家庭。

除了深度学习,“阿尔法狗”另一重武器叫作“强化学习”。“强化学习”是什么呢?简单点说,就是“无序尝试,定向鼓励”,就好比小朋友在屋里随机行动,走到数学教具旁边父母就说“好棒好棒”,后来小朋友就特别喜欢走到数学教具旁边(当然,这纯属假想的场景)。这种思维一点都不奇怪,在心理学中很早就已经应用到教学中,对大多数教学场景都有效果,尤其对一些发展迟缓的孩子做教学干预(但也有心理问题)。

最近我们都听说了新版本的“阿尔法狗零”,依靠自我对弈的强化学习,用3天时间战胜了老版本的所有“阿尔法狗”。这是很强大的方法。实际上,在“阿尔法狗”的最初版本中,自我对弈的时候也已经用到强化学习。随机尝试和正反馈能使得行为很快集中到特定的目标上。

现在问题就来了,还有什么是人工智能学不会的吗?

人工智能面临的瓶颈

如果机器学习这么厉害,人工智能什么都能学会,是不是很快就要取代人类了?

可以肯定的是,目前的人工智能还不是什么都能做,我们离万能超级人工智能还有很远的距离。

那是运算速度的问题吗?如果芯片算力按照摩尔定律、指数增长一直持续,我们会不会很快达到智能的奇点?

我个人的观点是,不完全是运算速度的问题,即便运算速度持续翻番,也还有一些阶梯的困难需要一个一个地跨越。这些困难也许并不是永远不可能跨越,但至少不是目前的算法能简单跨越的,而必须有新的算法或者理论突破(其实现在也有很多别的算法,我后面讨论)。

说到这里,闲聊两句。很多事物的发展是阶梯状的。我们往往容易从一件事的成功,推测未来所有事的成功,然而遇到了下一个挑战,仍然需要新的等待和突破。

关于人工智能这件事,人们的议论往往太过于“now or never”,要么认为目前已经条件成熟,只要算力增加,就能奇点来临;要么认为这都是痴人说梦,机器永远学不会人类的心智。但实际上更有可能的是,很远的未来有可能做到,但需要翻越一个又一个理论台阶。

举一个例子。

从牛顿力学和工业革命时期来看,因为牛顿定律的强大,人们就认为自己解决了世界上所有问题,未来只需要算,就能把一切预测出来。那个时候就有哲学观认为人就是机械机器。但事情的实际发展是:牛顿定律解决不了所有事。20世纪初,人们把牛顿定律和电磁理论结合起来,相信人类物理学大厦已经完备,只剩下头顶上的“三朵小乌云”,然而正是这“三朵小乌云”,牵扯出了后面的量子力学和相对论,直到现在人们也没有算出全世界。未来呢?人类有可能完全揭晓宇宙的奥秘吗?有可能。但仍然有一个一个新的鸿沟。

与之类比,超级人工智能有可能成真吗?有可能,但不是立刻。技术上还有一个个困难台阶需要跨越。“深度学习”不是万能的,算力也不是唯一重要的因素。

我把人工智能目前还解决不了的问题,也称为“三朵小乌云”。

什么是人工智能目前解决不了的问题呢?我们仍然从“阿尔法狗”说起。

“阿尔法狗”的强大是所有人工智能的强大,它面临的困难,也是人工智能问题的缩影。

“阿尔法狗”对一些人类认为很困难的问题却觉得很简单,对人类认为简单的问题却觉得困难。举一个很小的例子。这样一个问题:如果一个人从超市的货架上拿了一瓶酒就跑出门,店员会做什么?为什么?它就会觉得困难,难以回答。